in a ball (case 1⩽)
Let f\in W^1_p(\mathbb R^n), 1\leqslant p < n and p^* = \frac{np}{n-p} then the following inequality holds
\begin{equation} \Bigl(\int\limits_{B}|f(x)-f_B|^{p^*}\,dx\Bigr)^{\frac{1}{p^*}} \leqslant C\Bigl(\int\limits_{B}|\nabla f(x)|^{p}\,dx\Bigr)^{\frac{1}{p}} \end{equation}
for any balls B \subset \mathbb R^n, and constant C depends only on n and p. Here f_B = \frac{1}{|B|}\int\limits_{B}f\,dx.