Processing math: 0%

вторник, 27 ноября 2012 г.

Poincaré inequality


in a ball (case 1)

Let f\in W^1_p(\mathbb R^n), 1\leqslant p < n and p^* = \frac{np}{n-p} then the following inequality holds

\begin{equation} \Bigl(\int\limits_{B}|f(x)-f_B|^{p^*}\,dx\Bigr)^{\frac{1}{p^*}} \leqslant C\Bigl(\int\limits_{B}|\nabla f(x)|^{p}\,dx\Bigr)^{\frac{1}{p}} \end{equation}

for any balls B \subset \mathbb R^n, and constant C depends only on n and p. Here f_B = \frac{1}{|B|}\int\limits_{B}f\,dx.

пятница, 23 ноября 2012 г.

Lipschitz Function

from Encyclopedia of Mathematics
Начали писать статью про Липшецеву функцию.

Let a function f:[a,b]\to \mathbb R be such that for some constant M and for all x,y\in [a,b]
\begin{equation} |f(x)-f(y)| \leq M|x-y|. \end{equation}
Then the function f is called Lipschitz on [a,b] , and one writes f\in \operatorname{Lip}_M[a,b].

среда, 21 ноября 2012 г.

Generalized derivative


from Encyclopedia of Mathematics.

An extension of the idea of a derivative to some classes of non-differentiable functions. The first definition is due to S.L. Sobolev, who arrived at a definition of a generalized derivative from the point of view of his concept of a generalized function.